161 research outputs found

    Energy storage systems and power conversion electronics for e-transportation and smart grid

    Get PDF
    The special issue “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid” on MDPI Energies presents 20 accepted papers, with authors from North and South America, Asia, Europe and Africa, related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification and on the evolution of the electric grid to a smart grid. An extensive exploitation of renewable energy sources is foreseen for smart grid as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) levels are proposed

    Thermal Analysis of Power Rectifiers in Steady-State Conditions

    Get PDF
    Power rectifiers from electrical traction systems, but not only, can be irreversibly damaged if the temperature of the semiconductor junction reaches high values to determine thermal runaway and melting. The paper proposes a mathematical model to calculate the junction and the case temperature in power diodes used in bridge rectifiers, which supplies an inductive-resistive load. The new thermal model may be used to investigate the thermal behavior of the power diodes in steady-state regime for various values of the tightening torque, direct current through the diode, airflow speed and load parameters (resistance and inductance). The obtained computed values were compared with 3D thermal simulation results and experimental tests. The calculated values are aligned with the simulation results and experimental data.publishedVersio

    A novel energy-safe algorithm for enhancing the battery life for IoT sensors applications

    Get PDF
    Energy safe is mandatory for all isolated IoT tools, as in long way roads, mountains, or even in smart cities. If increasing the lifetime of these tools, the rentability of the global network loop becomes more efficient. Therefore, this paper's base main is to present a new approach for saving energy inside the source nods by supervising the state of energy inside each source nod and calculating the duty cycle factor. The relationship between these parameters is based on an optimization problem formulation. In this respect, the present paper is designed to propose a new approach that deals with increasing the lifetime of the Wireless Sensors Network (WSN) attached nodes, as fixed in the application. The newly devised design rests on implementing the IEEE 802.15.4 standard beacon-enabled mode, involving a cluster tree topology. Accordingly, every subgroup is allotted to apply a specifically different duty cycle, depending on the battery's remaining energy level, which contributes to creating a wide range of functional modes. Hence, various thresholds are defined. Simulation results are proving the efficiency of the proposed approach and show the energetic benefit. The proposed flowchart has minimized the consumed energy for the WSN, which improve the battery lifetime and enhance the IoT applications robustness. Simulations and experiments have been carried out under different conditions and the results proved that the proposed method is a viable solution.publishedVersio

    Inductive Wireless Power Transfer Charging for Electric vehicles - A Review

    Get PDF
    Considering a future scenario in which a driverless Electric Vehicle (EV) needs an automatic charging system without human intervention. In this regard, there is a requirement for a fully automatable, fast, safe, cost-effective, and reliable charging infrastructure that provides a profitable business model and fast adoption in the electrified transportation systems. These qualities can be comprehended through wireless charging systems. Wireless Power Transfer (WPT) is a futuristic technology with the advantage of flexibility, convenience, safety, and the capability of becoming fully automated. In WPT methods resonant inductive wireless charging has to gain more attention compared to other wireless power transfer methods due to high efficiency and easy maintenance. This literature presents a review of the status of Resonant Inductive Wireless Power Transfer Charging technology also highlighting the present status and its future of the wireless EV market. First, the paper delivers a brief history throw lights on wireless charging methods, highlighting the pros and cons. Then, the paper aids a comparative review of different type’s inductive pads, rails, and compensations technologies done so far. The static and dynamic charging techniques and their characteristics are also illustrated. The role and importance of power electronics and converter types used in various applications are discussed. The batteries and their management systems as well as various problems involved in WPT are also addressed. Different trades like cyber security economic effects, health and safety, foreign object detection, and the effect and impact on the distribution grid are explored. Prospects and challenges involved in wireless charging systems are also highlighting in this work. We believe that this work could help further the research and development of WPT systems.publishedVersio

    Toward Green Vehicles Digitalization for the Next Generation of Connected and Electrified Transport Systems

    Get PDF
    This survey paper reviews recent trends in green vehicle electrification and digitalization, as part of a special section on “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid”, led by the authors. First, the energy demand and emissions of electric vehicles (EVs) are reviewed, including the analysis of the trends of battery technology and of the recharging issues considering the characteristics of the power grid. Solutions to integrate EV electricity demand in power grids are also proposed. Integrated electric/electronic (E/E) architectures for hybrid EVs (HEVs) and full EVs are discussed, detailing innovations emerging for all components (power converters, electric machines, batteries, and battery-management-systems). 48 V HEVs are emerging as the most promising solution for the short-term electrification of current vehicles based on internal combustion engines. The increased digitalization and connectivity of electrified cars is posing cyber-security issues that are discussed in detail, together with some countermeasures to mitigate them, thus tracing the path for future on-board computing and control platforms.publishedVersio
    corecore